Example: Profit maximization.
Joint weekly demand functions for a firm's competing products:

$$
\begin{aligned}
& Q_{A}=100-3 P_{A}+2 P_{B} \\
& Q_{B}=60+2 P_{A}-2 P_{B}
\end{aligned}
$$

Weekly cost of producing Q_{A} units of product A and Q_{B} units of product B :

$$
C=20 Q_{A}+30 Q_{B}+1200
$$

Firm's weekly profit function

$$
\begin{aligned}
\Pi= & P_{A} Q_{A}+P_{B} Q_{B}-C \\
= & P_{A}\left(100-3 P_{A}+2 P_{B}\right)+P_{B}\left(60+2 P_{A}-2 P_{B}\right) \\
& -\left(20\left(100-3 P_{A}+2 P_{B}\right)+30\left(60+2 P_{A}-2 P_{B}\right)+1200\right) \\
= & -3 P_{A}^{2}+4 P_{A} P_{B}-2 P_{B}^{2}+100 P_{A}+80 P_{B}-5000
\end{aligned}
$$

Weekly profit function

$$
\Pi=-3 P_{A}^{2}+4 P_{A} P_{B}-2 P_{B}^{2}+100 P_{A}+80 P_{B}-5000
$$

First order conditions for max:

$$
\begin{array}{rlr}
\Pi_{P_{A}}=0 & \Longrightarrow & -6 P_{A}+4 P_{B}+100=0 \\
\Pi_{P_{B}}=0 & \Longrightarrow & 4 P_{A}-4 P_{B}+80=0
\end{array}
$$

Adding the two equations together gives an equation for the critical P_{A} value:

$$
-2 P_{A}+180=0 \Longrightarrow P_{A}^{*}=90
$$

Substituting this in the second equation $\left(\Pi_{P_{B}}=0\right)$ yields the critical P_{B} value:

$$
4 \cdot 90-4 P_{B}+80=0 \Longrightarrow-4 p_{B}+440=0 \Longrightarrow P_{B}^{*}=110
$$

The corresponding critical weekly outputs are

$$
Q_{A}^{*}=100-3 P_{A}^{*}+2 P_{B}^{*}=50 \quad \text { and } \quad Q_{B}^{*}=60+2 P_{A}^{*}-2 P_{B}^{*}=20
$$

The critical weekly revenue is

$$
R^{*}=P_{A}^{*} Q_{A}^{*}+P_{B}^{*} Q_{B}^{*}=6700,
$$

the critical weekly cost is

$$
C^{*}=20 Q_{A}^{*}+30 Q_{B}^{*}+1200=3800
$$

and the critical weekly profit is

$$
\Pi^{*}=R^{*}-C^{*}=2900 .
$$

The critical question:
Is Π^{*} the maximum weekly profit?

Second Derivative Test - Two Variable Case

(*) First order conditions for a local extreme value of the function $z=f(x, y)$ at the point (a, b) :

$$
f_{x}(a, b)=0=f_{y}(a, b)
$$

(*) If the first-order conditions are satisfied at (a, b), then the quadratic Taylor polynomial for $f(x, y)$ centered at (a, b) looks like this:

$$
\begin{aligned}
& \qquad \begin{aligned}
& T_{2}(x, y)=f(a, b)+\frac{f_{x x}(a, b)}{2}(x-a)^{2}+f_{x y}(a, b)(x-a)(y-b) \\
&+\frac{f_{y y}(a, b)}{2}(y-b)^{2} \\
&= f(a, b)+A(x-a)^{2}+B(x-a)(y-b)+C(y-b)^{2}
\end{aligned} \\
& \text { where } A=\frac{f_{x x}(a, b)}{2}, \quad B=f_{x y}(a, b) \text { and } C=\frac{f_{y y}(a, b)}{2} .
\end{aligned}
$$

If (x, y) is close to (a, b), then $f(x, y) \approx T_{2}(x, y)$, and therefore

$$
\begin{aligned}
f(x, y)-f(a, b) & \approx T_{2}(x, y)-f(a, b) \\
& =A(x-a)^{2}+B(x-a)(y-b)+C(y-b)^{2}
\end{aligned}
$$

There are three cases to consider:

1. $A(x-a)^{2}+B(x-a)(y-b)+C(y-b)^{2} \geq 0$ for all (x, y).
2. $A(x-a)^{2}+B(x-a)(y-b)+C(y-b)^{2} \leq 0$ for all (x, y).
3. $A(x-a)^{2}+B(x-a)(y-b)+C(y-b)^{2}$ takes positive values at some points and negative values at other points.

Each of these cases characterizes the critical value differently...

1. If $A(x-a)^{2}+B(x-a)(y-b)+C(y-b)^{2} \geq 0$ for all (x, y). Then $f(x, y)-f(a, b) \approx A(x-a)^{2}+B(x-a)(y-b)+C(y-b)^{2} \geq 0$ for all points (x, y) that are sufficiently close to (a, b), so that $f(a, b)$ is a local minimum value.
2. If $A(x-a)^{2}+B(x-a)(y-b)+C(y-b)^{2} \leq 0$ for all (x, y). Then $f(x, y)-f(a, b) \approx A(x-a)^{2}+B(x-a)(y-b)+C(y-b)^{2} \leq 0$ for all points (x, y) that are sufficiently close to (a, b), so that $f(a, b)$ is a local maximum value.
3. If $A(x-a)^{2}+B(x-a)(y-b)+C(y-b)^{2}$ takes both positive and negative values,

Then $f(x, y)-f(a, b) \geq 0$ at some points (x, y) that are close to (a, b), and $f(x, y)-f(a, b) \leq 0$ at other points (x, y) that are close to (a, b). In this case, $f(a, b)$ is neither a local maximum nor a local minimum value and the point $(a, b, f(a, b))$ is called a saddle point on the graph $z=f(x, y)$.

In case 1 , in the vicinity of $(a, b, f(a, b))$ (the orange dot), the graph of $z=f(x, y)$ looks like this:

In case 2 , in the vicinity of $(a, b, f(a, b))$, the graph of $z=f(x, y)$ looks like this:

In case 3 , in the vicinity of $(a, b, f(a, b))$, the graph of $z=f(x, y)$ looks like this:

In general, $z=f(x, y)$ may have multiple critical points and exhibit different behavior at different critical points, as in the case of function $z=10-(x-1)^{2}-(y-2)^{2}+\frac{2}{81}(x-1)^{4}+\frac{2}{81}(y-2)^{4}$, whose graph is depicted below.

Question: Given a critical point (a, b), how do we determine which case we are in?

Answer: We use the algebraic identity:

$$
\begin{aligned}
A(x-a)^{2} & +B(x-a)(y-b)+C(y-b)^{2} \\
& =A\left(\left[(x-a)+\frac{B}{2 A}(y-b)\right]^{2}+\left(4 A C-B^{2}\right) \frac{(y-b)^{2}}{4 A^{2}}\right) \\
& =A\left(U^{2}+D V^{2}\right)
\end{aligned}
$$

where

$$
\begin{gathered}
A=\frac{f_{x x}(a, b)}{2}, \quad B=f_{x y}(a, b), \\
U=\left[(x-a)+\frac{B}{2 A}(y-b)\right], \\
U=\frac{f_{y y}(a, b)}{2}, \\
2 A
\end{gathered}
$$

and

$$
D=4 A C-B^{2}=f_{x x}(a, b) f_{y y}(a, b)-f_{x y}(a, b)^{2} .
$$

Conclusion: If (x, y) is close to (a, b), then

$$
f(x, y)-f(a, b) \approx A\left(U^{2}+D V^{2}\right)
$$

where $\quad A=f_{x x}(a, b) \quad$ and $\quad D=f_{x x}(a, b) f_{y y}(a, b)-f_{x y}(a, b)^{2}$.
Therefore...

1. If $D>0$ and $A>0$, then $A\left(U^{2}+D V^{2}\right) \geq 0$, and if (x, y) is close to (a, b) then

$$
f(x, y)-f(a, b) \geq 0,
$$

so $f(a, b)$ is a local minimum value.
2. If $D>0$ and $A<0$, then $A\left(U^{2}+D V^{2}\right) \leq 0$, and if (x, y) is close to (a, b) then

$$
f(x, y)-f(a, b) \leq 0,
$$

so $f(a, b)$ is a local maximum value.

Conclusion: If (x, y) is close to (a, b), then

$$
f(x, y)-f(a, b) \approx A\left(U^{2}+D V^{2}\right)
$$

where $\quad A=f_{x x}(a, b) \quad$ and $\quad D=f_{x x}(a, b) f_{y y}(a, b)-f_{x y}(a, b)^{2}$.
Therefore...
3. If $D<0$, then $\left(U^{2}+D V^{2}\right)>0$ if $U \neq 0$ and $V=0$, but $\left(U^{2}+D V^{2}\right)<0$ if $V \neq 0$ and $U=0$.
Therefore there are points (x, y) close to (a, b) where

$$
f(x, y)-f(a, b) \approx A\left(U^{2}+D V^{2}\right)>0,
$$

and there are also (different) points (x, y) close to (a, b) where

$$
f(x, y)-f(a, b) \approx A\left(U^{2}+D V^{2}\right)<0,
$$

This means that, in this case, $f(a, b)$ is neither a maximum nor a minimum value.

The second derivative test for two variables:

If $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$ (i.e., if (a, b) is critical point), then find the second order partial derivatives, $f_{x x}(a, b), f_{x y}(a, b)$ and $f_{y y}(a, b)$ and the discriminant

$$
D(a, b)=f_{x x}(a, b) f_{y y}(a, b)-f_{x y}^{2}(a, b),
$$

and then analyze:

1. If $D(a, b)>0$ and $f_{x x}(a, b)>0$, then $f(a, b)$ is a local minimum value.
2. If $D(a, b)>0$ and $f_{x x}(a, b)<0$, then $f(a, b)$ is a local maximum value.
3. If $D(a, b)<0$ then $f(a, b)$ is neither a local minimum value nor a local maximum value - $(a, b, f(a, b))$ is a saddle point on the graph $z=f(x, y)$.
$\left.{ }^{*}\right)$ If $D(a, b)=0$, then the second derivative test yields no conclusions.

Example. Profit maximization (continued).
We found that the critical prices for the profit function

$$
\Pi=-3 P_{A}^{2}+4 P_{A} P_{B}-2 P_{B}^{2}+100 P_{A}+80 P_{B}-5000
$$

are $P_{A}^{*}=90$ and $P_{B}^{*}=110$, and the corresponding critical profit is

$$
\Pi^{*}=2900 .
$$

We will use the second derivative test to verify that the critical profit is indeed a maximum value. The first order derivatives are

$$
\Pi_{P_{A}}=-6 P_{A}+4 P_{B}+100 \quad \text { and } \quad \Pi_{P_{B}}=4 P_{A}-4 P_{B}+80
$$

so the second order derivatives are

$$
\Pi_{P_{A} P_{A}}=-6, \quad \Pi_{P_{A} P_{B}}=4 \text { and } \quad \Pi_{P_{B} P_{B}}=-4 .
$$

The discriminant is

$$
D=\Pi_{P_{A} P_{A}} \Pi_{P_{B} P_{B}}-\Pi_{P_{A} P_{B}}^{2}=24-16=8>0
$$

and $\Pi_{P_{A} P_{A}}<0$, so Π^{*} is a maximum, as hoped for.

Example: Find the critical points and the critical values of

$$
f(x, y)=x^{2}+y^{2}-x y+x^{3} .
$$

The partial derivatives are

$$
f_{x}=2 x-y+3 x^{2} \quad \text { and } \quad f_{y}=2 y-x .
$$

and solving the pair of equations

$$
\begin{array}{r}
2 x-y+3 x^{2}=0 \\
2 y-x=0
\end{array}
$$

we find that the critical points are $\left(x_{1}, y_{1}\right)=(0,0)$ and $\left(x_{2}, y_{2}\right)=$ $(-1 / 2,-1 / 4)$, with critical values $f(0,0)=0$ and $f(-1 / 2,-1 / 4)=1 / 16$.
On to the second derivative test:

Discriminant: $f_{x x}=2+6 x, \quad f_{x y}=-1$ and $f_{y y}=2$, so

$$
D(x, y)=\overbrace{2(2+6 x)}^{f_{x x} f_{y y}}-\overbrace{(-1)^{2}}^{f_{x_{y}^{2}}^{2}}=12 x+3 .
$$

Analysis:
${ }^{(*)} D(0,0)=3>0$ and $f_{x x}(0,0)=2>0$, so $f(0,0)=0$ is a relative minimum value.
(*) $D(-1 / 2,-1 / 4)=-3<0$, so $f(-1 / 2,-1 / 4)=5 / 16$ is neither a minimum nor a maximum value.

Graph of $z=x^{2}+y^{2}-x y+x^{3}$

$\left(^{*}\right)$ The two blue dots are located at the critical points on the graph.

