Taylor polynomials in one variable:
The linear Taylor polynomial for $y=f(t)$, centered at t_{0} is

$$
T_{1}(t)=f\left(t_{0}\right)+f^{\prime}\left(t_{0}\right) \cdot\left(t-t_{0}\right) .
$$

It has the properties

- $T_{1}\left(t_{0}\right)=f\left(t_{0}\right)$ and
- $T_{1}^{\prime}\left(t_{0}\right)=f^{\prime}\left(t_{0}\right)$.

The quadratic Taylor polynomial $T_{2}(t)$ for $f(t)$, centered at t_{0} is given by

$$
T_{2}(t)=f\left(t_{0}\right)+f^{\prime}\left(t_{0}\right)\left(t-t_{0}\right)+\frac{f^{\prime \prime}\left(t_{0}\right)}{2}\left(t-t_{0}\right)^{2},
$$

which has the properties

- $T_{1}\left(t_{0}\right)=f\left(t_{0}\right)$,
- $T_{1}^{\prime}\left(t_{0}\right)=f^{\prime}\left(t_{0}\right)$ and
- $T_{1}^{\prime \prime}\left(t_{0}\right)=f^{\prime \prime}\left(t_{0}\right)$.

These key properties mean that $T_{1}(t)$ and even more so, $T_{2}(t)$ behave very much like $f(t)$ at t_{0}, and as a consequence, the approximations

$$
f(t) \approx T_{1}(t) \quad \text { and } \quad f(t) \approx T_{2}(t)
$$

are very accurate when t is close to t_{0}, with the quadratic approximation usually being better.

Our goal today is to generalize these ideas to functions of several variables.

We have already introduced the linear Taylor polynomial for $f(x, y)$ centered at a point $\left(x_{0}, y_{0}\right)$,

$$
T_{1}(x, y)=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

which has analogous properties to T_{1} in the one-variable case:

- $T_{1}\left(x_{0}, y_{0}\right)=f\left(x_{0}, y_{0}\right)$,
- $T_{1 x}\left(x_{0}, y_{0}\right)=f_{x}\left(x_{0}, y_{0}\right)$ and
- $T_{1 y}\left(x_{0}, y_{0}\right)=f_{y}\left(x_{0}, y_{0}\right)$
and as a consequence, gives a good approximation $f(x, y) \approx T_{1}(x, y)$ if (x, y) is close (in the plane) to $\left(x_{0}, y_{0}\right)$.

To generalize the quadratic Taylor polynomial to functions of two variables, we'll look for a quadratic function in two variables $T_{2}(x, y)$ that satisfies conditions analogous to those satisfied by $T_{2}(t)$ in the onevariable case.

Quadratic functions in two variables generally have the form

$$
P(x, y)=\overbrace{\alpha}^{\text {constant }}+\overbrace{\beta x+\gamma y}^{\text {linear terms }}+\overbrace{\delta x^{2}+\varepsilon x y+\phi y^{2}}^{\text {quadratic terms }} .
$$

For the purposes of finding the quadratic Taylor polynomial $T_{2}(x, y)$ for the function $f(x, y)$, centered at the point $\left(x_{0}, y_{0}\right)$, it is more convenient to write it as

$$
\begin{aligned}
T_{2}(x, y)=A+ & B\left(x-x_{0}\right)+C\left(y-y_{0}\right) \\
& +D\left(x-x_{0}\right)^{2}+E\left(x-x_{0}\right)\left(y-y_{0}\right)+F\left(y-y_{0}\right)^{2},
\end{aligned}
$$

because it makes finding the values of the coefficients (A, \ldots, F) much easier. The conditions that we want T_{2} to satisfy are:

- $T_{2}\left(x_{0}, y_{0}\right)=f\left(x_{0}, y_{0}\right)$
- $T_{2 x x}\left(x_{0}, y_{0}\right)=f_{x x}\left(x_{0}, y_{0}\right)$
- $T_{2 x}\left(x_{0}, y_{0}\right)=f_{x}\left(x_{0}, y_{0}\right)$
- $T_{2 x y}\left(x_{0}, y_{0}\right)=f_{x y}\left(x_{0}, y_{0}\right)$
- $T_{2 y}\left(x_{0}, y_{0}\right)=f_{y}\left(x_{0}, y_{0}\right)$
- $T_{2 y y}\left(x_{0}, y_{0}\right)=f_{y y}\left(x_{0}, y_{0}\right)$

These conditions lead to the following equations for the coefficients of $T_{2}(x, y)=A+B\left(x-x_{0}\right)+C\left(y-y_{0}\right)+D\left(x-x_{0}\right)^{2}+E\left(x-x_{0}\right)\left(y-y_{0}\right)+F\left(y-y_{0}\right)^{2}$.

Constant term:
$f\left(x_{0}, y_{0}\right)=T_{2}\left(x_{0}, y_{0}\right)=A+0+0+0+0+0=A \Longrightarrow A=f\left(x_{0}, y_{0}\right)$.
Linear terms:

$$
T_{2 x}=B+2 D\left(x-x_{0}\right)+E\left(y-y_{0}\right)
$$

and

$$
T_{2 y}=C+E\left(x-x_{0}\right)+2 F\left(y-y_{0}\right)
$$

so

$$
\begin{aligned}
& f_{x}\left(x_{0}, y_{0}\right)=T_{2 x}\left(x_{0}, y_{0}\right)=B+0+0 \Longrightarrow B=f_{x}\left(x_{0}, y_{0}\right) \\
& f_{y}\left(x_{0}, y_{0}\right)=T_{2 y}\left(x_{0}, y_{0}\right)=C+0+0 \Longrightarrow C=f_{y}\left(x_{0}, y_{0}\right)
\end{aligned}
$$

Quadratic terms:

$$
T_{2 x x}=2 D, \quad T_{2 x y}=E \quad \text { and } \quad T_{2 y y}=2 F
$$

SO

$$
\begin{gathered}
f_{x x}\left(x_{0}, y_{0}\right)=T_{2 x x}\left(x_{0}, y_{0}\right)=2 D \Longrightarrow D=\frac{f_{x x}\left(x_{0}, y_{0}\right)}{2} \\
f_{x y}\left(x_{0}, y_{0}\right)=T_{2 x y}\left(x_{0}, y_{0}\right)=E \Longrightarrow E=f_{x y}\left(x_{0}, y_{0}\right) \\
f_{y y}\left(x_{0}, y_{0}\right)=T_{2 y y}\left(x_{0}, y_{0}\right)=2 F \Longrightarrow F=\frac{f_{y y}\left(x_{0}, y_{0}\right)}{2}
\end{gathered}
$$

Conclusion:

The quadratic Taylor polynomial for $f(x, y)$, centered at $\left(x_{0}, y_{0}\right)$ is

$$
\begin{gathered}
T_{2}(x, y)=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) \\
+\frac{f_{x x}\left(x_{0}, y_{0}\right)}{2}\left(x-x_{0}\right)^{2} \\
+f_{x y}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)\left(y-y_{0}\right) \\
\quad+\frac{f_{y y}\left(x_{0}, y_{0}\right)}{2}\left(y-y_{0}\right)^{2}
\end{gathered}
$$

Quadratic approximation: If (x, y) is close to $\left(x_{0}, y_{0}\right)$, then

$$
f(x, y) \approx T_{2}(x, y) .
$$

Comment: ' (x, y) is close to $\left(x_{0}, y_{0}\right)$ ' means that the distance in the plane between these two points is small. If both $\left|x-x_{0}\right|$ is small and $\left|y-y_{0}\right|$ is small, then the distance between (x, y) and $\left(x_{0}, y_{0}\right)$,

$$
\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}},
$$

will also be small.

Example. Find the quadratic Taylor polynomial for

$$
f(x, y)=(2 x+5 y)^{1 / 2}
$$

centered at the point $\left(x_{0}, y_{0}\right)=(3,2)$.
This amounts to (a) finding the coefficients and (b) putting the pieces together correctly. To find the coefficients, we need to find the first and second order partial derivatives of $f(x, y)$:

$$
\begin{gathered}
f_{x}=(2 x+5 y)^{-1 / 2}, f_{y}=\frac{5}{2}(2 x+5 y)^{-1 / 2}, f_{x x}=-(2 x+5 y)^{-3 / 2} \\
f_{x y}=-\frac{5}{2}(2 x+5 y)^{-3 / 2} \text { and } f_{y y}=-\frac{25}{4}(2 x+5 y)^{-3 / 2}
\end{gathered}
$$

Therefore

$$
\begin{gathered}
f(3,2)=16^{1 / 2}=4, \quad f_{x}(3,2)=16^{-1 / 2}=\frac{1}{4}, \quad f_{y}(3,2)=\frac{5}{2} \cdot 16^{-1 / 2}=\frac{5}{8} \\
f_{x x}(3,2)=-16^{-3 / 2}=-\frac{1}{64}, \quad f_{x y}(3,2)=-\frac{5}{2} \cdot 16^{-3 / 2}=-\frac{5}{128} \\
\text { and } \quad f_{y y}(3,2)=-\frac{25}{4} \cdot 16^{-3 / 2}=-\frac{25}{256} .
\end{gathered}
$$

So

$$
T_{2}(x, y)=4+\frac{1}{4}(x-3)+\frac{5}{8}(y-2)-\frac{1}{128}(x-3)^{2}-\frac{5}{128}(x-3)(y-2)-\frac{25}{512}(y-2)^{2}
$$

We can use this to approximate

$$
\begin{aligned}
& \sqrt{17}=f(3.25,2.1) \ldots \\
f(3.25,2.1) & =4+\frac{1}{4} \cdot \frac{1}{4}+\frac{5}{8} \cdot \frac{1}{10}-\frac{1}{128} \cdot \frac{1}{16}-\frac{5}{128} \cdot \frac{1}{4} \cdot \frac{1}{10}-\frac{25}{512} \cdot \frac{1}{100} \\
= & 4+\frac{1}{16}+\frac{1}{16}-\frac{1}{2048}-\frac{1}{1024}-\frac{1}{2048} \\
= & \frac{8192+128+128-1-2-1}{2048} \\
= & \frac{2111}{512}
\end{aligned}
$$

Quadratic approximation: $\sqrt{17} \approx \frac{2111}{512}=4.123046875$
Calculator: $\sqrt{17}=4.1231056 \ldots$
Error: $\left|\sqrt{17}-\frac{2111}{512}\right|<0.00006$.

Using the same process, we can find quadratic Taylor polynomials for functions of any number of variables.
For example, the quadratic Taylor polynomial for $f(x, y, z)$ centered at $\left(x_{0}, y_{0}, z_{0}\right)$ is given by

$$
\begin{aligned}
& T_{2}(x, y, z)=f\left(x_{0}, y_{0}, z_{0}\right)+f_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right) \\
& +f_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+f_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right) \\
& \quad+\frac{f_{x x}\left(x_{0}, y_{0}, z_{0}\right)}{2}\left(x-x_{0}\right)^{2} \\
& \quad+\frac{f_{y y}\left(x_{0}, y_{0}, z_{0}\right)}{2}\left(y-y_{0}\right)^{2} \\
& \quad+\frac{f_{z z}\left(x_{0}, y_{0}, z_{0}\right)}{2}\left(z-z_{0}\right)^{2} \\
& \quad+f_{x y}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)\left(y-y_{0}\right) \\
& \quad+f_{x z}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)\left(z-z_{0}\right) \\
& \quad+f_{y z}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)\left(z-z_{0}\right)
\end{aligned}
$$

Relax..!

${ }^{*}$) We won't be computing specific quadratic Taylor polynomials for approximation (or any other) purposes.
$\left.{ }^{*}\right)$ We will be using the quadratic Taylor polynomial in two variables to understand the second derivative test in two variables. To this end, the key observation is the following.

If $f_{x}\left(x_{0}, y_{0}\right)=0$ and $f_{y}\left(x_{0}, y_{0}\right)=0$ (we say that $\left(x_{0}, y_{0}\right)$ is a critical point in this case), then the quadratic Taylor polynomial for $f(x, y)$ centered at $\left(x_{0}, y_{0}\right)$ is

$$
\begin{gathered}
T_{2}(x, y)=f\left(x_{0}, y_{0}\right)+\frac{f_{x x}\left(x_{0}, y_{0}\right)}{2}\left(x-x_{0}\right)^{2}+f_{x y}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)\left(y-y_{0}\right) \\
+\frac{f_{y y}\left(x_{0}, y_{0}\right)}{2}\left(y-y_{0}\right)^{2}
\end{gathered}
$$

It follows in this case that if (x, y) is close to $\left(x_{0}, y_{0}\right)$, then

$$
\begin{aligned}
& f(x, y)-f\left(x_{0}, y_{0}\right) \approx T_{2}(x, y)-f\left(x_{0}, y_{0}\right) \\
&=\frac{f_{x x}\left(x_{0}, y_{0}\right)}{2}\left(x-x_{0}\right)^{2}+f_{x y}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)\left(y-y_{0}\right) \\
& \quad+\frac{f_{y y}\left(x_{0}, y_{0}\right)}{2}\left(y-y_{0}\right)^{2}
\end{aligned}
$$

