
Linear approximation (so far):

If z = f(x, y) and ∆x ≈ 0 (with ∆y = 0), then

∆z = f(x0 + ∆x, y0)− f(x0, y0) ≈ fx(x0, y0) ·∆x.

Likewise, if ∆y ≈ 0 (with ∆x = 0), then

∆z = f(x0, y0 + ∆y)− f(x0, y0) ≈ fy(x0, y0) ·∆y.

Example: Suppose that a firm produces two competing goods, A and

B, and that the firm’s revenue function is given by R(QA, QB), where

QA and QB are the monthly demands for goods A and B.

If the demand for good A increases by one unit and the demand for good

B remains fixed, then

∆R = R(QA + 1, QB)−R(QA, QB)

is called the marginal revenue of good A.
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On the other hand,

∆R ≈ ∂R

∂QA
·∆QA =

∂R

∂QA
· 1 =

∂R

∂QA
.

Just as in the one variable case, we call the partial derivative ∂R/∂QA

a marginal revenue function. More specifically we say that ∂R/∂QA is

the marginal revenue of good A.

For the same reason, we call ∂R/∂QB the marginal revenue of good B.

Suppose, for example that

R(QA, QB) = 640QA + 460QB − 4Q2
A − 6QAQB − 2Q2

B ,

where QA and QB are both measured in 1000s of units.

In this example, the marginal revenue functions are

∂R

∂QA
= 640− 8QA − 6QB and

∂R

∂QB
= 460− 6QA − 4QB .
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If the demand for A increases from 5000 units to 5400 units, while the

demand for B remains fixed at 4000 units, then

∆R ≈ ∂R

∂QA

∣∣∣∣
QA=5
QB=4

·∆QA = 576 · (0.4) = 230.4

Similarly, if the demand for A remains fixed at 5000 units, while the

demand for B increases from 4000 units to 4500 units, then

∆R ≈ ∂R

∂QB

∣∣∣∣
QA=5
QB=4

·∆QB = 414 · (0.5) = 207.

Question: Since we are assuming that A and B are competing goods,

what typically happens to the demand for B if the demand for A

increases?

If the demand for A increases, then it is common to see a decrease in

demand for B and vice versa.

Is it possible to extend linear approximation to the case where both A

and B are changing?
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In other words:

If z = f(x, y), then how can we approximate

∆z = f(x0 + ∆x, y0 + ∆y)− f(x0, y0)

if both ∆x ≈ 0 and ∆y ≈ 0, but neither are = 0?

Answer: (more general linear approximation)

∆z ≈ fx(x0, y0) ·∆x + fy(x0, y0) ·∆y.

Explanation: To approximate ∆z, break it into two components:

∆z = f(x0 + ∆x, y0 + ∆y)− f(x0, y0)

=

∆1︷ ︸︸ ︷
f(x0 + ∆x, y0)− f(x0, y0) +

∆2︷ ︸︸ ︷
f(x0 + ∆x, y0 + ∆y)− f(x0 + ∆x, y0)

≈ fx(x0, y0) ·∆x + fy(x0 + ∆x, y0) ·∆y

≈ fx(x0, y0) ·∆x + fy(x0, y0) ·∆y

because fy(x0 + ∆x, y0) ≈ fy(x0, y0) if ∆x ≈ 0 (and fy is continuous).
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Returning to the revenue example...
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Returning to the revenue example...

Suppose that demand for A increases from 5000 units to 5400 units,

while the demand for B decreases from 4000 units to 3700 units.
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Returning to the revenue example...

Suppose that demand for A increases from 5000 units to 5400 units,

while the demand for B decreases from 4000 units to 3700 units.

Then

∆R ≈ ∂R

∂QA

∣∣∣∣
QA=5
QB=4

·∆QA +
∂R

∂QB

∣∣∣∣
QA=5
QB=4

·∆QB

= 576 · (0.4) + 414 · (−0.3) = 106.2
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Example: The monthly household demand for widgets is given by

q(y, p) = 5
√

y2 − 2p

where q = demand; y = monthly income ($1000s); p = price of a widget.

• If monthly disposable income is $4000 and the price of a widget is

$6, then the household’s monthly demand for widgets is

q(4, 6) = 5
√

16− 12 = 5
√

4 = 10.

• If household income increases to $4300 and the price decreases to

$5.75, by approximately how much will demand increase?

• First: qy = 5y(y2 − 2p)−1/2 and qp = −5(y2 − 2p)−1/2.

• Second: qy(4, 6) = 10 and qp(4, 6) = −5/2

• Third: ∆y = 300
1000 = 0.3 and ∆p = −0.25, so...

∆q ≈ qy(4, 6) ·∆y + qp(4, 6) ·∆p = 10 · 0.3 + (−5/2)(−0.25) = 3.625
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This general form of linear approximation applies to any number of

variables, e.g., if w = f(x, y, z) and ∆x, ∆y and ∆z are small, then

∆w = f(x0 + ∆x, y0 + ∆y, z0 + ∆z)− f(x0, y0, z0)

≈ fx(x0, y0, z0)∆x + fy(x0, y0, z0)∆y + fz(x0, y0, z0)∆z.

Writing x0 + ∆x = x, y0 + ∆y = y and z0 + ∆z = z, so that

∆x = x− x0, ∆y = y − y0 and ∆z = z − z0,

we can rewrite the linear approximation formula above as

f(x, y, z)− f(x0, y0, z0) ≈ fx(x0, y0, z0)(x− x0) + fy(x0, y0, z0)(y − y0)

+ fz(x0, y0, z0)(z − z0)

or

f(x, y, z) ≈ f(x0, y0, z0) + fx(x0, y0, z0)(x− x0) + fy(x0, y0, z0)(y − y0)

+ fz(x0, y0, z0)(z − z0)

= T1(x, y, z)
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The linear function

T1(x, y, z) = f(x0, y0, z0) + fx(x0, y0, z0)(x− x0) + fy(x0, y0, z0)(y − y0)

+ fz(x0, y0, z0)(z − z0)

is the linear Taylor polynomial for w = f(x, y, z) centered at

(x0, y0, z0), and linear approximation (in three variables) can be written

as

f(x, y, z) ≈ T1(x, y, z),

assuming that x ≈ x0, y ≈ y0 and z ≈ z0.

We will use this approximation to justify the definition of critical points,

in the context of optimization.

To generalize the second derivative test to two variables and beyond, we

will need the quadratic Taylor polynomial in two (or more) variables.

For this we need higher order partial derivatives.
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The (first order) partial derivatives of a function z = f(x, y) are

fx = zx =
∂z

∂x
and fy = zy =

∂z

∂y
.

The second order partial derivatives of a function z = f(x, y) are (not

surprisingly) the partial derivatives of its (first order) partial derivatives:

∂

∂x

(
∂z

∂x

)
=

∂2z

∂x2
= zxx = (zx)x

∂

∂x

(
∂z

∂y

)
=

∂2z

∂x∂y
= zyx = (zy)x

∂

∂y

(
∂z

∂x

)
=

∂2z

∂y∂x
= zxy = (zx)y

and
∂

∂y

(
∂z

∂y

)
=

∂2z

∂y2
= zyy = (zy)y
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Example. If z = 4x3 + 3x2y − 2xy2 + y3, then its (first order) partial

derivatives are

zx = 12x2 + 6xy − 2y2 and zy = 3x2 − 4xy + 3y2

and its second order partial derivatives are

zxx = 24x+6y, zyx = 6x−4y, zxy = 6x−4y and zyy = −4x+6y.

Observation: In this example, zxy = zyx.

Coincidence? ...No.

Fact:

Second and higher order partial derivatives do not depend on

the order with respect to which a function is differentiated, only

on the number of times the function is differentiated with

respect to each variable.
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The third order partial derivatives of a function of two or more variables

are the partial derivatives of its second order partial derivatives.

Notation: For z = f(x, y)

zxxx =
∂3z

∂x3
,

aforementioned fact︷ ︸︸ ︷
zxyx = zxxy =

∂3z

∂x2∂y
, etc.

Example. (continued) For z = 4x3 + 3x2y− 2xy2 + y3 we already know

that

zxx = 24x + 6y, zyx = 6x− 4y = zxy and zyy = −4x + 6y.

so

zxxx = 24, zyxx = 6, zxyx = 6, zyyx = −4,

zxxy = 6, zyxy = −4, zxyy = −4 and zyyy = 6

Note that

zyxx = zxyx = zxxy = 6 and zyyx = zyxy = zxyy = −4,

as the ‘Fact’ predicted.
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