Linear approximation (so far):
If $z=f(x, y)$ and $\Delta x \approx 0($ with $\Delta y=0)$, then

$$
\Delta z=f\left(x_{0}+\Delta x, y_{0}\right)-f\left(x_{0}, y_{0}\right) \approx f_{x}\left(x_{0}, y_{0}\right) \cdot \Delta x
$$

Likewise, if $\Delta y \approx 0($ with $\Delta x=0)$, then

$$
\Delta z=f\left(x_{0}, y_{0}+\Delta y\right)-f\left(x_{0}, y_{0}\right) \approx f_{y}\left(x_{0}, y_{0}\right) \cdot \Delta y
$$

Example: Suppose that a firm produces two competing goods, A and B , and that the firm's revenue function is given by $R\left(Q_{A}, Q_{B}\right)$, where Q_{A} and Q_{B} are the monthly demands for goods A and B .

If the demand for good A increases by one unit and the demand for good B remains fixed, then

$$
\Delta R=R\left(Q_{A}+1, Q_{B}\right)-R\left(Q_{A}, Q_{B}\right)
$$

is called the marginal revenue of good A.

On the other hand,

$$
\Delta R \approx \frac{\partial R}{\partial Q_{A}} \cdot \Delta Q_{A}=\frac{\partial R}{\partial Q_{A}} \cdot 1=\frac{\partial R}{\partial Q_{A}}
$$

Just as in the one variable case, we call the partial derivative $\partial R / \partial Q_{A}$ a marginal revenue function. More specifically we say that $\partial R / \partial Q_{A}$ is the marginal revenue of good A .

For the same reason, we call $\partial R / \partial Q_{B}$ the marginal revenue of good B . Suppose, for example that

$$
R\left(Q_{A}, Q_{B}\right)=640 Q_{A}+460 Q_{B}-4 Q_{A}^{2}-6 Q_{A} Q_{B}-2 Q_{B}^{2}
$$

where Q_{A} and Q_{B} are both measured in 1000s of units.
In this example, the marginal revenue functions are

$$
\frac{\partial R}{\partial Q_{A}}=640-8 Q_{A}-6 Q_{B} \text { and } \frac{\partial R}{\partial Q_{B}}=460-6 Q_{A}-4 Q_{B}
$$

If the demand for A increases from 5000 units to 5400 units, while the demand for B remains fixed at 4000 units, then

$$
\left.\Delta R \approx \frac{\partial R}{\partial Q_{A}}\right|_{\substack{Q_{A}=5 \\ Q_{B}=4}} \cdot \Delta Q_{A}=576 \cdot(0.4)=230.4
$$

Similarly, if the demand for A remains fixed at 5000 units, while the demand for B increases from 4000 units to 4500 units, then

$$
\left.\Delta R \approx \frac{\partial R}{\partial Q_{B}}\right|_{\substack{Q_{A}=5 \\ Q_{B}=4}} \cdot \Delta Q_{B}=414 \cdot(0.5)=207
$$

Question: Since we are assuming that A and B are competing goods, what typically happens to the demand for B if the demand for A increases?

If the demand for A increases, then it is common to see a decrease in demand for B and vice versa.

Is it possible to extend linear approximation to the case where both A and B are changing?

In other words:

If $z=f(x, y)$, then how can we approximate

$$
\Delta z=f\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-f\left(x_{0}, y_{0}\right)
$$

if both $\Delta x \approx 0$ and $\Delta y \approx 0$, but neither are $=0$?
Answer: (more general linear approximation)

$$
\Delta z \approx f_{x}\left(x_{0}, y_{0}\right) \cdot \Delta x+f_{y}\left(x_{0}, y_{0}\right) \cdot \Delta y .
$$

Explanation: To approximate Δz, break it into two components:
$\Delta z=f\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-f\left(x_{0}, y_{0}\right)$

$$
\begin{aligned}
& =\overbrace{f\left(x_{0}+\Delta x, y_{0}\right)-f\left(x_{0}, y_{0}\right)}^{\Delta_{1}}+\overbrace{f\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-f\left(x_{0}+\Delta x, y_{0}\right)}^{\Delta_{2}} \\
& \approx f_{x}\left(x_{0}, y_{0}\right) \cdot \Delta x+f_{y}\left(x_{0}+\Delta x, y_{0}\right) \cdot \Delta y \\
& \approx f_{x}\left(x_{0}, y_{0}\right) \cdot \Delta x+f_{y}\left(x_{0}, y_{0}\right) \cdot \Delta y
\end{aligned}
$$

because $f_{y}\left(x_{0}+\Delta x, y_{0}\right) \approx f_{y}\left(x_{0}, y_{0}\right)$ if $\Delta x \approx 0$ (and f_{y} is continuous).

Returning to the revenue example...

Returning to the revenue example...
Suppose that demand for A increases from 5000 units to 5400 units, while the demand for B decreases from 4000 units to 3700 units.

Returning to the revenue example...
Suppose that demand for A increases from 5000 units to 5400 units, while the demand for B decreases from 4000 units to 3700 units.

Then

$$
\begin{aligned}
\Delta R & \left.\approx \frac{\partial R}{\partial Q_{A}}\right|_{\substack{Q_{A}=5 \\
Q_{B}=4}} \cdot \Delta Q_{A}+\left.\frac{\partial R}{\partial Q_{B}}\right|_{\substack{Q_{A}=5 \\
Q_{B}=4}} \cdot \Delta Q_{B} \\
& =576 \cdot(0.4)+414 \cdot(-0.3)=106.2
\end{aligned}
$$

Example: The monthly household demand for widgets is given by

$$
q(y, p)=5 \sqrt{y^{2}-2 p}
$$

where $q=$ demand; $y=$ monthly income ($\$ 1000 \mathrm{~s}$); $p=$ price of a widget.

- If monthly disposable income is $\$ 4000$ and the price of a widget is $\$ 6$, then the household's monthly demand for widgets is

$$
q(4,6)=5 \sqrt{16-12}=5 \sqrt{4}=10 .
$$

- If household income increases to $\$ 4300$ and the price decreases to $\$ 5.75$, by approximately how much will demand increase?
- First: $q_{y}=5 y\left(y^{2}-2 p\right)^{-1 / 2}$ and $q_{p}=-5\left(y^{2}-2 p\right)^{-1 / 2}$.
- Second: $q_{y}(4,6)=10$ and $q_{p}(4,6)=-5 / 2$
- Third: $\Delta y=\frac{300}{1000}=0.3$ and $\Delta p=-0.25$, so...
$\Delta q \approx q_{y}(4,6) \cdot \Delta y+q_{p}(4,6) \cdot \Delta p=10 \cdot 0.3+(-5 / 2)(-0.25)=3.625$

This general form of linear approximation applies to any number of variables, e.g., if $w=f(x, y, z)$ and $\Delta x, \Delta y$ and Δz are small, then

$$
\begin{aligned}
\Delta w & =f\left(x_{0}+\Delta x, y_{0}+\Delta y, z_{0}+\Delta z\right)-f\left(x_{0}, y_{0}, z_{0}\right) \\
& \approx f_{x}\left(x_{0}, y_{0}, z_{0}\right) \Delta x+f_{y}\left(x_{0}, y_{0}, z_{0}\right) \Delta y+f_{z}\left(x_{0}, y_{0}, z_{0}\right) \Delta z
\end{aligned}
$$

Writing $x_{0}+\Delta x=x, y_{0}+\Delta y=y$ and $z_{0}+\Delta z=z$, so that

$$
\Delta x=x-x_{0}, \Delta y=y-y_{0} \text { and } \Delta z=z-z_{0}
$$

we can rewrite the linear approximation formula above as

$$
\begin{aligned}
f(x, y, z)-f\left(x_{0}, y_{0}, z_{0}\right) \approx f_{x}\left(x_{0}, y_{0}, z_{0}\right) & \left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right) \\
& +f_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)
\end{aligned}
$$

or

$$
\begin{aligned}
f(x, y, z) \approx & f\left(x_{0}, y_{0}, z_{0}\right)+f_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right) \\
& \quad+f_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right) \\
= & T_{1}(x, y, z)
\end{aligned}
$$

The linear function

$$
T_{1}(x, y, z)=f\left(x_{0}, y_{0}, z_{0}\right)+f_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)
$$

$$
+f_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)
$$

is the linear Taylor polynomial for $w=f(x, y, z)$ centered at $\left(x_{0}, y_{0}, z_{0}\right)$, and linear approximation (in three variables) can be written as

$$
f(x, y, z) \approx T_{1}(x, y, z)
$$

assuming that $x \approx x_{0}, y \approx y_{0}$ and $z \approx z_{0}$.
We will use this approximation to justify the definition of critical points, in the context of optimization.

To generalize the second derivative test to two variables and beyond, we will need the quadratic Taylor polynomial in two (or more) variables.

For this we need higher order partial derivatives.

The (first order) partial derivatives of a function $z=f(x, y)$ are

$$
f_{x}=z_{x}=\frac{\partial z}{\partial x} \quad \text { and } \quad f_{y}=z_{y}=\frac{\partial z}{\partial y} .
$$

The second order partial derivatives of a function $z=f(x, y)$ are (not surprisingly) the partial derivatives of its (first order) partial derivatives:

$$
\begin{aligned}
\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial x}\right) & =\frac{\partial^{2} z}{\partial x^{2}}=z_{x x}=\left(z_{x}\right)_{x} \\
\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial y}\right) & =\frac{\partial^{2} z}{\partial x \partial y}=z_{y x}=\left(z_{y}\right)_{x} \\
\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial x}\right) & =\frac{\partial^{2} z}{\partial y \partial x}=z_{x y}=\left(z_{x}\right)_{y}
\end{aligned}
$$

and

$$
\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial y}\right)=\frac{\partial^{2} z}{\partial y^{2}}=z_{y y}=\left(z_{y}\right)_{y}
$$

Example. If $z=4 x^{3}+3 x^{2} y-2 x y^{2}+y^{3}$, then its (first order) partial derivatives are

$$
z_{x}=12 x^{2}+6 x y-2 y^{2} \quad \text { and } \quad z_{y}=3 x^{2}-4 x y+3 y^{2}
$$

and its second order partial derivatives are
$z_{x x}=24 x+6 y, \quad z_{y x}=6 x-4 y, \quad z_{x y}=6 x-4 y \quad$ and $\quad z_{y y}=-4 x+6 y$.
Observation: In this example, $z_{x y}=z_{y x}$.
Coincidence? ...No.
Fact:
Second and higher order partial derivatives do not depend on the order with respect to which a function is differentiated, only on the number of times the function is differentiated with respect to each variable.

The third order partial derivatives of a function of two or more variables are the partial derivatives of its second order partial derivatives.

Notation: For $z=f(x, y)$

$$
z_{x x x}=\frac{\partial^{3} z}{\partial x^{3}}, \quad \overbrace{z_{x y x}=z_{x x y}}^{\text {aforementioned fact }}=\frac{\partial^{3} z}{\partial x^{2} \partial y}, \text { etc. }
$$

Example. (continued) For $z=4 x^{3}+3 x^{2} y-2 x y^{2}+y^{3}$ we already know that

$$
z_{x x}=24 x+6 y, \quad z_{y x}=6 x-4 y=z_{x y} \quad \text { and } \quad z_{y y}=-4 x+6 y
$$

so

$$
\begin{gathered}
z_{x x x}=24, z_{y x x}=6, z_{x y x}=6, z_{y y x}=-4, \\
z_{x x y}=6, z_{y x y}=-4, z_{x y y}=-4 \text { and } z_{y y y}=6
\end{gathered}
$$

Note that

$$
z_{y x x}=z_{x y x}=z_{x x y}=6 \quad \text { and } \quad z_{y y x}=z_{y x y}=z_{x y y}=-4
$$

as the 'Fact' predicted.

