1. The demand function for a firm's product is given by $q=6 \ln (5 y-0.5 p)$, where

- q is the monthly demand for the firm's product, measured in 1000's of units;
- y is the average monthly disposable income in the market for the firm's product measured in 1000s of dollars;
- p is the price of the firm's product, also measured in dollars.
(a) (5 pts) Find $q, \partial q / \partial y$ and $\partial q / \partial p$ when the monthly income is $\$ 3000$ and $p=10$. Round your (final) answers to two decimal places.

Since income is measured in $\$ 1000$ s, an average monthly income of $\$ 3000$, means that $y=3 \ldots$

$$
\left.q\right|_{\substack{y=3 \\ p=10}}=6 \ln 10 \approx 13.816,\left.\quad \frac{\partial q}{\partial y}\right|_{\substack{y=3 \\ p=10}}=\left.\frac{30}{5 y-0.5 p}\right|_{\substack{y=3 \\ p=10}}=\frac{30}{10}=3
$$

and

$$
\left.\frac{\partial q}{\partial p}\right|_{\substack{y=3 \\ p=10}}=-\left.\frac{3}{5 y-0.5 p}\right|_{\substack{y=3 \\ p=10}}=-\frac{3}{10}=-0.3
$$

(b) (3 pts) Use linear approximation and your answers to (a) to estimate the change in monthly demand for the firm's product if the average income in the market increases to $\$ 3200$ and the price of the firm's product increases to $\$ 10.5$.

Once again, since income is measured in $\$ 1000 s$, a change of $\$ 200$ means that $\Delta y=\frac{200}{1000}=0.2$, and linear approximation says that...

$$
\Delta q \approx\left(\left.\frac{\partial q}{\partial y}\right|_{\substack{y=3 \\ p=10}}\right) \cdot \Delta y+\left(\left.\frac{\partial q}{\partial p}\right|_{\substack{y=3 \\ p=10}}\right) \cdot \Delta p=3 \cdot(0.2)+(-0.3) \cdot(0.5)=0.45
$$

i.e., demand will increase by about 0.45 (which is 450 units, since demand is measured in 1000 s of units).
(c) (2 pts) Find the price-elasticity of demand for the firm's product when the price is $\$ 10$ and average income is $\$ 3000$.

The price-elasticity of demand is found using the formula $\eta=\frac{\partial q}{\partial p} \cdot \frac{p}{q}$, so that the given point...

$$
\left.\eta\right|_{\substack{y=3 \\ p=10}}=\left.\frac{\partial q}{\partial p} \cdot \frac{p}{q}\right|_{\substack{y=3 \\ p=10}}=(-0.3) \cdot \frac{10}{6 \ln 10} \approx-0.217
$$

2. (10 pts) Find the critical point(s) and critical value(s) of the function

$$
f(x, y)=2 x^{3}-6 x y+y^{2}+1,
$$

and use the second derivative test to classify the critical value(s) as relative minimum value(s), relative maximum value(s) or neither.

First we solve the first-order equations:

$$
\begin{aligned}
& f_{x}=0 \quad \Longrightarrow \quad 6 x^{2}-6 y=0 \\
& f_{y}=0 \quad \Longrightarrow \quad-6 x+2 y=0
\end{aligned}
$$

The equation $f_{x}=0$ shows that at the critical points $6 y=6 x^{2}$ so $y=x^{2}$. Substituting this into the equation $f_{y}=0$ gives the equation

$$
-6 x+2 x^{2}=0 \Longrightarrow 2 x(x-3)=0
$$

This means that the two critical x values are $x_{1}=0$ and $x_{2}=3$. The corresponding critical y-values are $y_{1}=x_{1}^{2}=0$ and $y_{2}=x_{2}^{2}=9$, so the critical points are $(0,0)$ and $(3,9)$. The critical values are $f(0,0)=1$ and $f(3,9)=-26$.
Next, we find the second derivatives of $f(x, y)$ and the discriminant to apply the second derivative test:

$$
f_{x x}=12 x, f_{x y}=-6, \text { and } f_{y y}=2 \Longrightarrow D=f_{x x} f_{y y}-f_{x y}^{2}=24 x-36
$$

$\left.{ }^{*}\right)$ At the critical point $(0,0)$ we have $D(0,0)=-36<0$ so the critical value $f(0,0)=1$ is neither a minimum nor a maximum.
$\left(^{*}\right)$ At the critical point $(3,9)$ we have $D(3,9)=36>0$ and $f_{x x}(3,9)=36>0$, so the critical value $f(3,9)=-26$ is a relative minimum value.

