1. The demand function for a firm's product is given by $q=8 \ln (6 y-0.75 p)$, where

- q is the monthly demand for the firm's product, measured in 1000's of units;
- y is the average monthly disposable income in the market for the firm's product measured in 1000s of dollars;
- p is the price of the firm's product, also measured in dollars.
(a) (5 pts) Find $q, \partial q / \partial y$ and $\partial q / \partial p$ when the monthly income is $\$ 3500$ and $p=12$. Round your (final) answers to two decimal places.

Since income is measured in $\$ 1000$ s, an average monthly income of $\$ 3500$, means that $y=3.5 \ldots$

$$
\left.q\right|_{\substack{y=3.5 \\ p=12}}=8 \ln 12 \approx 19.878,\left.\quad \frac{\partial q}{\partial y}\right|_{\substack{y=3.5 \\ p=12}}=\left.\frac{48}{6 y-0.75 p}\right|_{\substack{y=3.5 \\ p=12}}=\frac{48}{12}=4
$$

and

$$
\left.\frac{\partial q}{\partial p}\right|_{\substack{y=3.5 \\ p=12}}=-\left.\frac{6}{6 y-0.75 p}\right|_{\substack{y=3.5 \\ p=12}}=-\frac{6}{12}=-0.5
$$

(b) (3 pts) Use linear approximation and your answers to (a) to estimate the change in monthly demand for the firm's product if the average income in the market increases to $\$ 3800$ and the price of the firm's product increases to $\$ 12.40$.

Once again, since income is measured in $\$ 1000$ s, a change of $\$ 300$ means that $\Delta y=\frac{300}{1000}=0.3$, and linear approximation says that...

$$
\Delta q \approx\left(\left.\frac{\partial q}{\partial y}\right|_{\substack{y=3.5 \\ p=12}}\right) \cdot \Delta y+\left(\left.\frac{\partial q}{\partial p}\right|_{\substack{y=3.5 \\ p=12}}\right) \cdot \Delta p=4 \cdot(0.3)+(-0.5) \cdot(0.4)=1
$$

i.e., demand will increase by about 1 (which is 1000 units, since demand is measured in 1000 s of units).
(c) (2 pts) Find the price-elasticity of demand for the firm's product when the price is $\$ 12$ and average income is $\$ 3500$.

The price-elasticity of demand is found using the formula $\eta=\frac{\partial q}{\partial p} \cdot \frac{p}{q}$, so that the given point...

$$
\left.\eta\right|_{\substack{y=3.5 \\ p=12}}=\left.\frac{\partial q}{\partial p} \cdot \frac{p}{q}\right|_{\substack{y=3.5 \\ p=12}}=(-0.5) \cdot \frac{12}{8 \ln 12} \approx-0.302
$$

2. (10 pts) Find the critical point(s) and critical value(s) of the function

$$
g(u, v)=3 u^{2}+6 u v-2 v^{3}+7,
$$

and use the second derivative test to classify the critical value(s) as relative minimum value(s), relative maximum value(s) or neither.

First we solve the first-order equations:

$$
\begin{aligned}
& g_{u}=0 \quad \Longrightarrow \quad 6 u+6 v=0 \\
& g_{v}=0 \quad \Longrightarrow \quad 6 u-6 v^{2}=0
\end{aligned}
$$

The equation $g_{v}=0$ shows that at the critical points $6 u=6 v^{2}$ so $u=v^{2}$. Substituting this into the equation $g_{u}=0$ gives the equation

$$
6 v^{2}+6 v=0 \Longrightarrow 6 v(v+1)=0
$$

This means that the two critical v values are $v_{1}=0$ and $v_{2}=-1$. The corresponding critical u-values are $u_{1}=v_{1}^{2}=0$ and $u_{2}=v_{2}^{2}=1$, so the critical points are $(0,0)$ and $(1,-1)$. The critical values are $g(0,0)=7$ and $g(1,-1)=6$.
Next, we find the second derivatives of $g(u, v)$ and the discriminant to apply the second derivative test:

$$
g_{u u}=6, g_{u v}=6, \text { and } f_{v v}=-12 v \Longrightarrow D=g_{u u} g_{v v}-g_{u v}^{2}=-72 v-36 .
$$

$\left.{ }^{*}\right)$ At the critical point $(0,0)$ we have $D(0,0)=-36<0$ so the critical value $g(0,0)=7$ is neither a minimum nor a maximum.
$\left.{ }^{*}\right)$ At the critical point $(1,-1)$ we have $D(1,-1)=36>0$ and $g_{u u}(1,-1)=6>0$, so the critical value $g(1,-1)=6$ is a relative minimum value.

