1. $(4 \mathrm{pts}) \int_{0}^{4} \frac{5 d x}{\sqrt{x^{2}+9}}=\left.5 \cdot \ln \left|x+\sqrt{x^{2}+9}\right|\right|_{0} ^{4}=5(\ln 9-\ln 3)=5 \ln (9 / 3)=5 \ln 3 \quad(\approx 5.493)$

Using the formula $\int \frac{d u}{\sqrt{u^{2}+a^{2}}}=\ln \left|u+\sqrt{u^{2}+a^{2}}\right|+C$, with $a^{2}=9$.
2. (6 pts) Find the present value of a continuous income stream that pays at the annual rate $f(t)=1000 t$ for $T=10$ years, assuming that the interest rate is $r=3 \%$.

$$
\begin{aligned}
\text { Present Value } & =\int_{0}^{10} 1000 t e^{-0.03 t} d t=\left.1000 \cdot \frac{e^{-0.03 t}}{(0.03)^{2}}(-0.03 t-1)\right|_{0} ^{10} \\
& =\frac{1000}{0.0009}\left(e^{-0.3}(-1.3)-e^{0}(-1)\right) \\
& =\frac{1000}{0.0009}\left(1-1.3 e^{-0.3}\right) \approx 41040.35
\end{aligned}
$$

Using the formula $\int u e^{a u} d u=\frac{e^{a u}}{a^{2}}(a u-1)+C$, with $a=-0.03$.
3. (6 pts) The population of a small island is growing at a rate that is proportional to the square root of its size. In the year 2000 the island's population was 900 , and in the year 2010 the population was 1024. What will the island's population be in $2020 ?$
(i) "... growing at a rate that is proportional to the square root of its size" $\Longrightarrow \quad \frac{d P}{d t}=k \sqrt{P}$, where $P(t)$ is the size of the population at time t (measured in years), and k is the (unknown) constant of proportionality.
(ii) Separate: $\frac{d P}{\sqrt{P}}=k d t$
(iii) Integrate: $\int \frac{d P}{\sqrt{P}}=\int k d t \Longrightarrow 2 \sqrt{P}=k t+C \Longrightarrow \sqrt{P}=k t+C$.
(*) The unknown constants k and C absorb the factor $1 / 2$.
(iv) Solve for $P: \sqrt{P}=k t+C \Longrightarrow P=(k t+C)^{2}$.
(v) Use the data to find k and C, and the population in 2020:

Year 2000: $P(0)=900=(k \cdot 0+C)^{2}=C^{2} \Longrightarrow C=30 .^{\dagger}$
Year 2010: $P(10)=1024=(10 k+30)^{2} \Longrightarrow(10 k+30)^{2}=32^{2} \Longrightarrow 10 k=2 \Longrightarrow k=0.2$.
Year 2020: $P(20)=(0.2 \cdot 20+30)^{2}=34^{2}=1156$.
4. $(4 \mathrm{pts})$ Find the indicated partial derivatives of the function $f(x, y)=\frac{x^{2} y+3 x y^{3}}{4 x+1}$.

Clean up your answers.
$\frac{\partial f}{\partial x}=\frac{\left(2 x y+3 y^{3}\right)(4 x+1)-4\left(x^{2} y+3 x y^{3}\right)}{(4 x+1)^{2}}=\frac{4 x^{2} y+2 x y+3 y^{3}}{(4 x+1)^{2}} \quad$ (Need to use quotient rule for this one.)
$\frac{\partial f}{\partial y}=\frac{1}{4 x+1} \cdot \frac{\partial}{\partial y}\left(x^{2} y+3 x y^{3}\right)=\frac{x^{2}+9 x y^{2}}{4 x+1}$
(No need to use quotient rule for this one.)

[^0]
[^0]: ${ }^{\dagger}$ It is also possible to choose $C=-30$, which will lead to a different k and a different solution. This particular initial value problem does not have a unique solution - my bad.

