1. $(4 \mathrm{pts}) \int_{0}^{3} \frac{4 d x}{\sqrt{x^{2}+16}}=\left.4 \cdot \ln \left|x+\sqrt{x^{2}+16}\right|\right|_{0} ^{3}=4(\ln 8-\ln 4)=4 \ln (8 / 4)=4 \ln 2 \quad(\approx 2.773)$

Using the formula $\int \frac{d u}{\sqrt{u^{2}+a^{2}}}=\ln \left|u+\sqrt{u^{2}+a^{2}}\right|+C$, with $a^{2}=16$.
2. (6 pts) Find the present value of a continuous income stream that pays at the annual rate $f(t)=500 t$ for $T=20$ years, assuming that the interest rate is $r=4 \%$.

$$
\begin{aligned}
\text { Present Value } & =\int_{0}^{20} 500 t e^{-0.04 t} d t=\left.500 \cdot \frac{e^{-0.04 t}}{(0.04)^{2}}(-0.04 t-1)\right|_{0} ^{20} \\
& =\frac{500}{0.0016}\left(e^{-0.8}(-1.8)-e^{0}(-1)\right) \\
& =\frac{500}{0.0016}\left(1-1.8 e^{-0.8}\right) \approx 59752.46
\end{aligned}
$$

Using the formula $\int u e^{a u} d u=\frac{e^{a u}}{a^{2}}(a u-1)+C$, with $a=-0.04$.
3. (6 pts) The population of a small island is growing at a rate that is proportional to the square root of its size. In the year 2005 the island's population was 400 , and in the year 2015 the population was 625 . What will the island's population be in $2025 ?$
(i) "... growing at a rate that is proportional to the square root of its size" $\Longrightarrow \quad \frac{d P}{d t}=k \sqrt{P}$, where $P(t)$ is the size of the population at time t (measured in years), and k is the (unknown) constant of proportionality.
(ii) Separate: $\frac{d P}{\sqrt{P}}=k d t$
(iii) Integrate: $\int \frac{d P}{\sqrt{P}}=\int k d t \Longrightarrow 2 \sqrt{P}=k t+C \Longrightarrow \sqrt{P}=k t+C$.
(*) The unknown constants k and C absorb the factor $1 / 2$.
(iv) Solve for $P: \sqrt{P}=k t+C \Longrightarrow P=(k t+C)^{2}$.
(v) Use the data to find k and C, and the population in 2025:

Year 2005: $P(0)=400=(k \cdot 0+C)^{2}=C^{2} \Longrightarrow C=20 .^{\dagger}$
Year 2015: $P(10)=625=(10 k+20)^{2} \Longrightarrow(10 k+20)^{2}=25^{2} \Longrightarrow 10 k=5 \Longrightarrow k=0.5$.
Year 2025: $P(20)=(0.5 \cdot 20+20)^{2}=30^{2}=900$.
4. (4 pts) Find the indicated partial derivatives of the function $f(x, y)=\frac{3 x^{2} y+x y^{5}}{2 y+1}$.

Clean up your answers.

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\frac{1}{2 y+1} \cdot \frac{\partial}{\partial x}\left(3 x^{2} y+x y^{5}\right)=\frac{6 x y+y^{5}}{2 y+1} \\
& \frac{\partial f}{\partial y}=\frac{\left(3 x^{2}+5 x y^{4}\right)(2 y+1)-2\left(3 x^{2} y+x y^{5}\right)}{(2 y+1)^{2}}=\frac{3 x^{2}+5 x y^{4}+8 x y^{5}}{(2 y+1)^{2}} \quad \text { (No need to use quotient rule for this one.) }
\end{aligned}
$$

[^0]
[^0]: ${ }^{\dagger}$ It is also possible to choose $C=-20$, which will lead to a different k and a different solution. This particular initial value problem does not have a unique solution - my bad.

